io
(Europe/Berlin)
Topics viewed: 392907

Europa


Europa

Europa (auch Jupiter II) ist mit einem Durchmesser von 3121 km der zweitinnerste und kleinste der vier großen Monde des Planeten Jupiter und der sechstgrößte im Sonnensystem. Obwohl die Temperatur auf der Oberfläche von Europa maximal −150 °C erreicht, vermutet man, dass sich unter einer Kruste aus Wassereis ein bis zu 100 km tiefer Ozean aus Wasser befinden könnte.

Entdeckung

Europas Entdeckung wird dem italienischen Gelehrten Galileo Galilei zugesprochen, der im Jahre 1610 sein einfaches Fernrohr auf den Jupiter richtete. Die vier großen Monde Io, Europa, Ganymed und Kallisto werden auch als die Galileischen Monde bezeichnet.

Benannt wurde der Mond nach Europa, einer Geliebten des Zeus aus der griechischen Mythologie. Obwohl der Name Europa bereits kurz nach seiner Entdeckung von Simon Marius vorgeschlagen wurde, konnte er sich über lange Zeit nicht durchsetzen. Erst in der Mitte des 20. Jahrhunderts kam er wieder in Gebrauch. Vorher wurden die Galileischen Monde üblicherweise mit römischen Ziffern bezeichnet und Europa war Jupiter II.

Die Galileischen Monde sind so hell, dass man sie bereits mit einem Fernglas oder kleinen Teleskopen beobachten kann.

Umlaufbahn und Rotation

Europa umkreist den Jupiter rechtläufig in einem mittleren Abstand von 670.900 km in 3 Tagen, 13 Stunden und 14,6 Minuten. Ihre Umlaufbahn ist mit einer numerischen Exzentrizität von 0,0101 fast kreisförmig. Ihr jupiternächster und -fernster Bahnpunkt – Perijovum und Apojovum – weichen jeweils nur um 1,01 % von der großen Halbachse ab. Die Bahnebene ist nur 0,470° gegenüber Jupiters Äquatorebene geneigt.

Die Umlaufzeit von Europa steht zu ihrem inneren und äußeren Nachbarmond in einer Bahnresonanz von 2:1 bzw. 1:2; das heißt, während zwei Umläufen von Europa läuft Io genau viermal und Ganymed genau einmal um Jupiter.

Europa weist, wie der Erdmond und die übrigen inneren Jupitermonde, eine gebundene Rotation auf und zeigt stets mit derselben Seite zu dem Planeten.

Monde

Aufbau und physikalische Daten

Europa besitzt einen mittleren Durchmesser von 3121,6 km und eine mittlere Dichte von 3,01 g/cm³. Obwohl sie deutlich der kleinste der vier Galileischen Monde ist, ist ihre Masse größer als die aller kleineren Monde des Sonnensystems zusammengenommen.

Die Temperatur auf Europas Oberfläche beträgt nur 110 K (etwa –160 °C) am Äquator und 50 K (etwa –220 °C) an den Polen.

Oberfläche

Die Oberfläche von Europa umfasst 30,6 Millionen km², was ungefähr der Größe von Afrika entspricht. Mit einer Albedo von 0,64 ist sie eine der hellsten Oberflächen aller bekannten Monde im Sonnensystem: 64 % des eingestrahlten Sonnenlichts werden reflektiert. Die Oberfläche setzt sich aus Eis zusammen. Die rötlichen Färbungen sind Folge von abgelagerten Mineralien. Die Oberfläche ist außergewöhnlich eben. Sie ist von Furchen überzogen, die allerdings eine geringe Tiefe aufweisen. Nur wenige Strukturen, die sich mehr als einige hundert Meter über die Umgebung erheben, wurden festgestellt.

Krater

Auf Europa sind sehr wenige Einschlagskrater sichtbar, von denen nur drei einen Durchmesser von mehr als 5 km besitzen. Der zweitgrößte Krater, Pwyll, hat einen Durchmesser von 26 km. Pwyll ist eine der geologisch jüngsten Strukturen auf Europa. Bei dem Einschlag wurde helles Material aus dem Untergrund über Tausende von Kilometern hinweg ausgeworfen.

Die geringe Verkraterung ist ein Hinweis darauf, dass Europas Oberfläche geologisch sehr jung ist. Schätzungen der Einschlagshäufigkeit von Kometen und Asteroiden ergeben ein Alter von höchstens 30 Millionen Jahren.

Furchen und Gräben

Europas auffälligstes Merkmal ist ein Netzwerk von kreuz und quer verlaufenden Gräben und Furchen, Lineae genannt (Einzahl: Linea), die die gesamte Oberfläche überziehen. Die Lineae haben eine starke Ähnlichkeit mit Rissen und Verwerfungen auf irdischen Eisfeldern. Die größeren sind etwa 20 km breit und besitzen undeutliche äußere Ränder sowie einen inneren Bereich aus hellem Material. Die Lineae könnten durch Kryovulkanismus (Kältevulkanismus) oder den Ausbruch von Geysiren aus warmem Wasser entstanden sein, wodurch die Eiskruste auseinander gedrückt wurde.

Diese Lineae befinden sich außerdem zum allergrößten Teil an anderen Stellen, als man sie erwartet. Dies lässt sich möglicherweise dadurch erklären, dass sich zwischen Eiskruste und Mondoberfläche ein Ozean befindet. Dieser könnte entstanden sein, weil sich auf Grund der exzentrischen Umlaufbahn des Mondes um den Jupiter andauernd dessen Gravitationswirkung auf Europa ändert, sodass dieser ständig verformt wird. Dadurch erwärmt sich Europa und das Eis schmilzt zum Teil.

Weitere Strukturen

Ein weiterer Typ von Oberflächenstrukturen sind kreis- und ellipsenförmige Gebilde, Lenticulae (lat. Flecken) genannt. Viele sind Erhebungen (engl. Domes), andere Vertiefungen oder ebene dunkle Flecken. Die Lenticulae entstanden offensichtlich durch aufsteigendes wärmeres Eis, vergleichbar mit Magmakammern in der Erdkruste. Die Domes wurden dabei empor gedrückt, die ebenen dunklen Flecken könnten gefrorenes Schmelzwasser sein. Chaotische Zonen, wie Conomara Chaos, sind wie ein Puzzle aus Bruchstücken geformt, die von glattem Eis umgeben sind. Sie haben das Aussehen von Eisbergen in einem gefrorenen See.

Eisvorkommen und Ozean

Die glatte Oberfläche und die Strukturen erinnern sehr stark an Eisfelder in Polarregionen auf der Erde. Es wird vermutet, dass sich unter Europas Eiskruste ein Ozean aus flüssigem Wasser befindet, der durch Gezeitenkräfte erwärmt wird. Bei den sehr niedrigen Oberflächentemperaturen ist Wassereis hart wie Gestein. Die größten sichtbaren Krater wurden offensichtlich mit frischem Eis ausgefüllt und eingeebnet. Dieser Mechanismus sowie Berechnungen der durch die Gezeitenkräfte verursachten Erwärmung lassen darauf schließen, dass Europas Kruste aus Wassereis etwa 10 bis 15 km stark ist. Der darunter liegende Ozean könnte eine Tiefe von bis zu 100 km aufweisen. Die Menge an flüssigem Wasser wäre damit mehr als doppelt so groß wie die der irdischen Ozeane. Ab etwa 3 km unter der Oberfläche könnte es jedoch im Eis eingeschlossene Wasserblasen geben.

Detaillierte Aufnahmen zeigen, dass sich Teile der Eiskruste gegeneinander verschoben haben und zerbrochen sind, wobei ein Muster von Eisfeldern entstand. Die Bewegung der Kruste wird durch Gezeitenkräfte hervorgerufen, die die Oberfläche um 30 m heben und senken. Die Eisfelder müssten aufgrund der gebundenen Rotation ein bestimmtes, vorhersagbares Muster aufweisen. Weitere Aufnahmen zeigen stattdessen, dass nur die geologisch jüngsten Gebiete ein solches Muster aufweisen. Andere Gebiete weichen mit zunehmendem Alter von diesem Muster ab. Das kann damit erklärt werden, dass sich Europas Oberfläche geringfügig schneller bewegt als ihr innerer Mantel und der Kern. Die Eiskruste ist vom Mondinnern durch den dazwischen liegenden Ozean mechanisch entkoppelt und wird von Jupiters Gravitationskräften beeinflusst. Vergleiche von Aufnahmen der Raumsonden Galileo und Voyager 2 zeigen, dass sich Europas Eiskruste in etwa 10.000 Jahren einmal komplett um den Mond bewegen müsste.

Innerer Aufbau

Der Mond gleicht in seinem Aufbau den terrestrischen (erdähnlichen) Planeten, da er überwiegend aus Silikatgestein aufgebaut ist. Seine äußere Schicht besteht aus Wasser mit einer geschätzten Mächtigkeit von 100 km. Darüber hinaus dürfte er einen relativ kleinen Kern aus Eisen besitzen.

Atmosphäre

Aufnahmen des Hubble-Weltraumteleskops ergaben Hinweise auf das Vorhandensein einer extrem dünnen Atmosphäre aus Sauerstoff, mit einem Druck von 10−11 bar. Es wird angenommen, dass der Sauerstoff durch die Einwirkung der Sonnenstrahlung auf die Eiskruste entsteht, wobei das Wassereis in Sauerstoff und Wasserstoff gespalten wird. Der flüchtige Wasserstoff entweicht in den Weltraum, der massereichere Sauerstoff wird durch Europas Gravitation festgehalten.

Magnetfeld

Bei Vorbeiflügen der Galileosonde wurde ein schwaches Magnetfeld gemessen (seine Stärke entspricht etwa ¼ der Ganymeds). Das Magnetfeld variiert, während sich Europa durch die äußerst ausgeprägte Magnetosphäre des Jupiter bewegt. Die Daten von Galileo weisen darauf hin, dass sich unter Europas Oberfläche eine elektrisch leitende Flüssigkeit befindet, etwa ein Ozean aus Salzwasser. Darüber hinaus zeigen spektroskopische Untersuchungen, dass die rötlichen Linien und Strukturen an der Oberfläche reich an Salzen wie Magnesiumoxid sind. Die Salzablagerungen könnten zurückgeblieben sein, als ausgetretenes Salzwasser verdampft war. Da die festgestellten Salze in der Regel farblos sind, dürften andere Elemente wie Eisen oder Schwefel für die rötliche Färbung verantwortlich sein.

Spekulationen über Leben auf Europa

Das mögliche Vorhandensein von flüssigem Wasser ließ Spekulationen darüber aufkommen, ob in Europas Ozeanen Formen von Leben existieren können. Auf der Erde wurden Lebensformen entdeckt, die unter extremen Bedingungen auch ohne das Vorhandensein von Sonnenlicht bestehen können, etwa in den hydrothermalen Quellen (Schwarze Raucher) oder in der Tiefsee.

Nach einem Bericht des Wissenschaftsmagazins New Scientist kamen NASA-Wissenschaftler, die die gestrichene Nasa-Mission Jupiter Icy Moons Orbiter planten, nach Auswertungen früherer Missionen im Frühjahr 2004 zu dem Schluss, dass der Mond Europa weitaus lebensfeindlicher sein könnte als zuvor angenommen.

So wurden auf der Oberfläche Wasserstoffperoxid und von konzentrierter Schwefelsäure bedeckte Flächen nachgewiesen. Hier geht man davon aus, dass die Säure aus dem unter der Eisschicht angenommenen Ozean stammt. Die Konzentration wird mit unterseeischem Vulkanismus erklärt, der für den Schwefel verantwortlich sein kann.

Es ist durchaus möglich, dass der Schwefel vom Jupitermond Io stammt. Mittlerweile gibt es auch Indizien dafür, dass der vermutete Ozean unter der Oberfläche Europas eine nennenswerte Salzkonzentration hat. So wurde Epsomit auf der Oberfläche nachgewiesen (eine Magnesiumsulfat-Verbindung). Epsomit könnte durch Reaktion des Schwefels vom Jupitermond Io mit Magnesiumchlorid unter Strahleneinwirkung entstanden sein. Das Magnesiumchlorid stammt mit hoher Wahrscheinlichkeit aus dem Innern Europas. Epsomit ist wesentlich leichter nachzuweisen als Natrium- oder Kaliumchlorid, das man eher auf Europa vermuten würde.

Um eine Kontaminierung Europas mit irdischen Mikroorganismen zu vermeiden, ließ man die Raumsonde Galileo, die zuletzt Europa beobachtete, in der Jupiteratmosphäre verglühen.

Erkundung durch Sondenmissionen

Nach den Fly-bys der Sonden Pioneer 10 und Pioneer 11 in 1973 bzw. 1974 gab es von den größten Monden Jupiters zumindest unscharfe Photographien. Voyager 1 und Voyager 2 lieferten bei ihren Fly-bys 1979 wesentlich genauere Bilder und Daten. 1995 begann die Sonde Galileo acht Jahre lang, den Jupiter zu umrunden. Sie führte dabei auch genaue Untersuchungen und Messungen an den Galileischen Monden durch, auf denen der größte Teil unseres heutigen Wissens über diese Himmelskörper beruht.

Geplante Missionen

Bislang gibt es keine Hinweise für Leben, doch sollen spätere Missionen dies klären. Gedacht wird an eine unbemannte Kryobot-Raumsonde, die auf der Oberfläche landen, sich durch die Eiskruste durchschmelzen und eine Art „Mini-U-Boot“ (Hydrobot) in Europas Ozean ablassen soll. Bevor diese Mission überhaupt Wirklichkeit werden kann, könnte in der nächsten Dekade eine Europa Orbiter Raumsonde gestartet werden, die in eine Umlaufbahn um Europa eintreten und den Mond umfassend studieren soll. Davon erhofft man sich weitere Erkenntnisse über Europa zu sammeln und geeignete Landestellen für spätere Missionen zu finden.

Für das Jahr 2020 planten die Raumfahrtagenturen NASA und ESA den Start der Europa Jupiter System Mission/Laplace Mission, welche zwei Orbiter vorsah (JEO - Jupiter Europa Orbiter und JGO - Jupiter Ganymede Orbiter), die jeweils in einen Orbit um Europa und Ganymed eintreten sollten und das gesamte Jupitersystem mit einem revolutionären Tiefgang erforschen sollten. Der JEO (Jupiter Europa Orbiter) sollten nach der Planung 2028 den Orbit um Europa einschwenken und mehrere Jahre lang mit verschiedenen on-board-Instrumenten Daten u.a. über Morphologie, Temperatur und Schwerkraft des Mondes sammeln. Zusätzlich sollen mittels Ice Penetrating Radar die Eigenschaften des Wassereises studiert werden, um Aufschluss über die Konsistenz bzw. das Ausmaß des Eismantels und eines eventuellen flüssigen Ozeans geben zu können.

Die NASA, die den JEO bauen wollte, stieg jedoch aus dem Projekt aus. Die ESA verwirklicht jedoch den JGO mit leicht abgewandelter Missionsplanung als JUICE. JUICE soll nach ihrer Ankunft am Jupiter in Jahr 2030 zwei Vorbeiflüge an Europa durchführen und klären, ob Europa den vermuteten Ozean unter seiner Eiskruste hat.

(Last Modified: 26. February 2017 10:22:04)
(Lettercount: 11220)

Themen-Wolke

  Max Moor     Illusion     Jodie Foster     Europa     Kallisto     Schopenhauer     Misanthrop     Brandenburg     Fotos     Wissen-5     Wissen-2     Hegel     Shambhala     Sibel Kekilli     Johann Tetzel     Slawen     TCL     Melanchthon     Ina Müller     Schlafparalyse     Lierhaus     Jupiter     Daubner     Maerchen     Perl     Zervakis     Antimarteria     Richter     Bad Schandau     Anne Will     Tschirner     Adorno     Xenophon     Bloch     Heimat     Marlene Dietrich     Riefenstahl     Statistik     Titeltt     Kim Fisher     Wissen-1     Müntzer     TV-Script     Philosophie     Ginny Good     Kloster Zinna     Novatlan     Martin Luther     Sokrates     F1-Script     Flaeming     Klemmkuchen     Siemens     Jueterbog     Hertha BSC     Wissen-4     Stirner     Petridou     Caren Miosga     Io     Esmée Denters     Spargel     Stolz auf Sido     De France     Platon     Dennewitz     Bedingfield     Wissen-3     Pinar Atalay     De Sade     Moss     Schelling     Debussy     Scholl-Latour     Sagen     IRCnet     Weltmeister     Kohlhaas     Liga-Script     WetterApp     Nietzsche     Berlin     Lindwurm     BVG     Schmidt     Feuerbach     Compiz     Pielhau     Christen     Ganymed     Freud     Ingwer     Miss Platnum     Anke Engelke     OpenCV     Neukölln     Impressum     Goethe     Judith Rakers     Sotschi     Galilei     Kuttner     Kontakt     Schöneberger     Schiller     Kant     Fichte  

(Themecount: 107)